SUCCEED – School of Universal Computing, Construction, and Engineering Education

Mark Allen Weiss, Eminent Scholar Chair Professor of Computer Science, Associate Dean, and Interim Director

Bruk Berhane, Assistant Professor Trina Fletcher, Assistant Professor Monique Ross, Assistant Professor, Computer Science Stephen Secules, Assistant Professor Alexandra Coso Strong, Assistant Professor

SUCCEED was formed in 2018, through a collaboration between the College of Engineering and Computing and the STEM Transformation Institute, as the first engineering and computing education department at a minority-serving institution. The school was created in alignment with the university's vision to be a "leading urban public research university focused on student learning, innovation, and collaboration." As such, SUCCEED aims to be the premier department in the U.S. with expertise in developing engineering and computing leaders who reflect the growing diversity of the 21st century.

Faculty within the school, along with students and staff, seek to connect research and innovation with student learning through collaboration with other members of the college and FIU as a whole. In particular, SUCCEED faculty research and promote evidence-based approaches that broaden participation and improve educational outcomes. Through these efforts, the faculty impact current and future engineering and computer science students at FIU and beyond. We offer the following undergraduate degree:

Bachelor of Science in Interdisciplinary Engineering

Interdisciplinary students are exposed to the fundamentals of science and engineering, while also developing their skills as leaders, systems thinkers and engineering designers through engineering leadership and business courses as well as a project-based course sequence.

Rather than focusing exclusively on an existing Engineering subfield such as Biomedical, Civil, Environmental, Electrical, Computer, or Mechanical Engineering, this is a unique interdisciplinary program with broad flexibility and a student-guided focus. The core vision of the program's design is to provide a customizable degree for students, so they may optimize their opportunities to enter the workforce, including emergent entrepreneurial businesses. The curriculum aims to develop students into engineering leaders who utilize a systems-perspective to collaborate across disciplines and design innovative, human-centered solutions to local, national, and global challenges. It combines a core encompassing math, sciences, business,

communication, and engineering courses from all disciplines along with a secondary field that could include traditional existing engineering areas, or focus on grand challenges such as personalized learning, cybersecurity, and water accessibility. Through this program, students and graduates will be prepared to tackle complex engineering and business situations. The curriculum will allow students to engage in projects and learning experiences that develop their skills managing complex and open-ended projects, designing solutions for multidisciplinary engineering challenges, and working in a real-world team environment. A Bachelor's degree in Interdisciplinary Engineering will prepare students to become leaders in various aspects of industry, including health care, communications, environmental stewardship, government, and business.

Program Educational Objectives

The curriculum is designed to give students a broad understanding of the fundamentals of science and engineering, and to develop students into engineering leaders who utilize a systems-perspective to collaborate across disciplines and design innovative, human-centered solutions to local, national, and global challenges.

As a result, the program educational outcomes of the BS in Interdisciplinary Engineering are to develop graduates who, within three to five years after graduation, will:

- Exhibit strong critical thinking, design, and problemsolving skills within the engineering industry, an advanced degree program, or another field where they can apply these skills.
- Demonstrate an increasing level of leadership and professional responsibility by using effective communication skills and participating in multidisciplinary collaboration.
- Exhibit a commitment to professional ethics, global awareness, and life-long learning.

Student Outcomes:

At the time of graduation, students within the Interdisciplinary Engineering program at FIU will be able to demonstrate:

- 1. an ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics
- an ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors
- an ability to communicate effectively with a range of audiences
- an ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts
- an ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives

- 6. an ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions
- 7. an ability to acquire and apply new knowledge as needed, using appropriate learning strategies.

Common Prerequisite Courses and Equivalencies

FIU Course(s)	Equivalent Course(s)
CHM 1045, CHM 1045L	CHMX045/X045L or
	CHMX045C or
	CHSX440 and CHMX045L
MAC 2281	MACX311 or MACX281
MAC 2282	MACX312 or MACX282
MAC 2283	MACX313 or MACX283
MAP 2302	MAPX302 or MAPX305
PHY 2048, PHY 2048L	PHYX048/X048L or
	PHYX048C or
	PHYX043 and PHY048L
PHY 2049, PHY 2049L	PHYX049/X049L or
	PHYX049C or
	PHYX044 and PHYX049L
ECO 2023	ECOX023
EEL 2880	Intro programming in Python,
	C, C++, Java, or equivalent

Courses which form part of the statewide articulation between the State University System and the Florida College System will fulfill the Lower Division Common Prerequisites.

For generic course substitutions/equivalencies for Common Program Prerequisites offered at community colleges, state colleges, or state universities, visit: http://www.flvc.org, See Common Prerequisite Manual.

Common Prerequisites:

CHM 1045	General Chemistry I	3
CHM 1045L	General Chemistry Lab I	1
MAC 2281	Calculus for Engineering I	4
MAC 2282	Calculus for Engineering II	4
MAC 2283	Calculus for Engineering III	4
MAP 2302	Differential Equations	3
PHY 2048	Physics with Calculus I	4
PHY 2048L	General Physics Lab I	1
PHY 2049	Physics with Calculus II	4
PHY 2049L	General Physics Lab II	1
ECO 2023	Macroeconomics	3
EEL 2880	Applied Software Techniques in	
	Engineering	3

Degree Program Hours: 120

The qualifications for admissions to the Interdisciplinary Engineering Program are the same as for admission to the College of Engineering and Computing.

Lower Division Preparation

Lower division requirements include at least 60 hours of pre-engineering credits (see the Undergraduate Studies portion of this catalog for specific requirements). These courses include the common prerequisites shown above, and Introduction to Engineering. (EML-1533 Introduction to CAD for Mechanical Engineers is required unless previously taken in high school). In addition, both FIU

freshman and transfer students who have not completed their core curriculum at the transfer institution must take the FIU University Core Curriculum Requirements, whose topics also complement the goals and objectives of the College of Engineering and Computing (including economic, environmental, political, and/or social issues). Students must make up any missing prerequisites before they will be allowed to begin taking certain engineering courses (see course listing for required pre-/co-requisites).

Interdisciplinary Common Prerec	r Engineering Curriculum quisites	35
Additional UCC	Courses	19
SLS 1501	Freshman Experience	1
ENC 1101	English Composition 1	3
ENC 1102	English Composition 2	3
UCC1	Humanities 1	3
UCC2	Humanities 2 – <i>GL</i>	3
UCC3	Arts 1	3
UCC4	Social Science 1	3
Engineering For	undation	23
EGS 1006	Introduction to Engineering	2
EGS 2030	Ethics and Legal Aspects in	
	Engineering	1
CWR 3201	Fluid Mechanics	3
CWR 3201L	Fluid Mechanics Lab	1
EGN 3311	Statics	3
EGN 3321	Dynamics	3
EGN 3365	Materials in Engineering	3
EEL 3110	Circuit Analysis	3 1
EEL 3110L EIN 3235	Circuits Lab	3
EIN 3233	Evaluation of Engineering Data I ³	
Engineering Sec	condary Field⁴	12
	siness and Leadership	12
EGN 3613	Engineering Economy	3
EIN 4328	Introduction to Engineering	_
	Entrepreneurship ⁵	3
	Business or Leadership Courses ⁶	6
Interdisciplinary Project Experiences 12		12
EGN 3910	Socio-technical Systems Design	3
	Engineering Projects Course Electi	
IDS 4918	Vertically Integrated Projects C ⁸	6
University-wide Electives 7		
¹ May substitute	EML-2032, COP-2210/2250, or	other

¹May substitute EML-2032, COP-2210/2250, or other department specific equivalents

²Waivable for AA transfer students; other transfer students should see an advisor; may substitute department-specific equivalents

³May substitute STA-3033 or STA-3111

⁴Students must select twelve credits of additional required or elective courses in a degree-granting ABET-accredited program in the College of Engineering and Computing (CEC) to form a coherent secondary field. At least nine credits must be upper division courses hosted in CEC.

⁵May substitute ENT-4113, EEL-4933, or an alternative course as approved by advisor.

⁶List held by SUCCEED. Courses may include MAN 3022: Introduction to Management and MAR 3023: Introduction to Marketing (GL)

⁷Project course in engineering (list held by SUCCEED) or approved co-op or independent study.

⁸The Vertically Integrated Project is taken in two consecutive semesters starting in the junior year for three credits each attempt. A third course (IDS 3917) may be taken in a semester prior to these two courses to fulfill the projects-course requirement.

Other Requirements

Students must meet the University Foreign Language Requirement, must have a minimum 2.0 GPA, must complete all required classes, and must otherwise meet all of the state and university requirements in order to graduate. Students who enter the university with fewer than 60 transferred credits must take 9 summer credits. All UCC courses and courses that are prerequisites for other courses taken later in the curriculum must be passed with a grade of "C" or higher. Also see the Undergraduate Studies portion of this catalog for additional information.

Course Descriptions Definition of Prefixes

EGN - Engineering General;

Courses that meet the University's Global Learning requirement are identified as GL.

EGN 3910 Socio-technical Systems Design (3). A collaborative, projects-based introduction to interdisciplinary design using systems thinking and human-centered design principles.